Montreal Forced Aligner: an accurate and trainable aligner using Kaldi
Michael McAuliffe¹, Michaella Socolof², Sarah Mihuc², Michael Wagner¹, & Morgan Sonderegger¹

¹Department of Linguistics, McGill University ²Department of Linguistics, University of Maryland

Most speech systems are designed to be used for a specific language and are not easily adapatible for other languages. This project aims to provide an accurate and trainable aligner using Kaldi.

BACKGROUND

Featured Tools
- Kaldi
- HTK
- FAVE-align
- MAUS
- EasyAlign
- Gentle

Features
- Kaldi-based
- Trainable
- Tested on 20+ languages
- Can model words not in the dictionary
- Preserves alignments of other words
- Triphone acoustic models
- Right and left context for phones (models coarticulation)
- Acoustic features adapted by speaker
- More accurate alignment
- Parallel processing helps scaling up
- Command line interface
- Well-tested, easy-to-use
- Actively maintained
- Well-documented and open source
- Input
 - Orthographic TextGrid and label files
 - Wav files
- Output
 - Aligned TextGrids

REFERENCES

[Goldman 2011]

EVALUATION

How do alignments from the Montreal Forced Aligner compare with a state-of-the-art system?

- Read speech from production experiment (48 minutes)
 - “Please say ___ again”
 - Target 1-2 syllable words with vowel + obstruent
 - Vowel and obstruent of target word were hand annotated
 - Vowel begin, vowel end, and obstruent end
 - Force aligned
- Compared with Prosodylab-aligner
 - Also trainable
 - Uses similar acoustic models to other systems (Monophone GMM)
- Conditions:
 - Flat – Trained on limited data (48 minutes)
 - Pretrained on lab recordings (15 hours)
 - Pretrained on LibriSpeech (474 hours)

INPUT

SYSTEM COMPARISON

<table>
<thead>
<tr>
<th>System</th>
<th>Toolkit</th>
<th>Trainable</th>
<th>Acoustic model</th>
<th>Pretrained models</th>
<th>Supported platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFA</td>
<td>Kaldi</td>
<td>Yes</td>
<td>Triphone GMM</td>
<td>English</td>
<td>Mac, Linux, Windows</td>
</tr>
<tr>
<td>Prosodylab-aligner²</td>
<td>HTK</td>
<td>Yes</td>
<td>Monophone GMM</td>
<td>English, French</td>
<td>Mac, Linux</td>
</tr>
<tr>
<td>FAVE-align/P2FA³</td>
<td>HTK</td>
<td>No</td>
<td>Monophone GMM</td>
<td>English</td>
<td>Mac, Web, Windows</td>
</tr>
<tr>
<td>(Web)</td>
<td>HTK</td>
<td>Non-trivial</td>
<td>Monophone GMM</td>
<td>English + 8 other languages</td>
<td>Linux, Web</td>
</tr>
<tr>
<td>MAUS⁴</td>
<td>HTK</td>
<td>No</td>
<td>Monophone GMM</td>
<td>English + 3 other languages</td>
<td>Windows</td>
</tr>
<tr>
<td>EasyAlign¹</td>
<td>HTK</td>
<td>No</td>
<td>Monophone GMM</td>
<td>English</td>
<td>Mac, Web</td>
</tr>
<tr>
<td>Gentle³</td>
<td>Kaldi</td>
<td>No</td>
<td>ANN</td>
<td>English</td>
<td>Mac, Web</td>
</tr>
</tbody>
</table>

OUTPUT

RESULTS

DISCUSSION

- Montreal Forced Aligner outperforms the Prosodylab-Aligner
- Pretrained models on larger datasets are generally preferable than only using the dataset to be aligned
- Larger data sets may be unnecessary if the style/reading conditions are the same